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Abstract--Recent work has addressed the problem of determining the strain in a group of deformed linear 
objects. A new numerical method is described here which highlights some relationships with previous approaches 
and shows how analyses can be performed in three dimensions. 

INTRODUCTION 

OBJECTS which were initially present in deformed rocks 
may be used to estimate strain. Usually populations, 
rather than single objects, are used to reduce errors 
inherent in the strain estimation process. Much work has 
centred on the use of linear markers such as andalusite 
crystals (Sanderson & Meneilly 1981) and belemnites 
(Beach 1979, Ferguson & Lloyd 1984), and on different 
methods of analysis of such markers (Panozzo 1984, 
Sanderson & Phillips 1987). The aim of this contribution 
is to give a method for determining the strain in a 
population of deformed linear objects whose final 
lengths and orientations may be measured. It assumes 
that the objects deformed homogeneously with their 
surroundings. More complex methods (e.g. Ferguson & 
Lloyd 1984) must be used if objects and matrix deformed 
heterogeneously. The advantage of the method de- 
scribed here is that it involves no more computation than 
any other numeric technique for the homogeneous 
strain situation, yet is equally applicable in two or three 
dimensions. It also shows how strain of linear objects 
may be treated by tensor algebraic methods in the same 
way as may populations of lines of unspecified lengths, 
and populations of planes (Woodcock 1977, Harvey & 
Laxton 1980). In the first part of the paper the derivation 
of the method is described, and in the second part a 
worked example is given showing how it is used in 
practice. In the final two parts the method is compared 
with those of Panozzo (1984) and Sanderson & Phillips 
(1987) with the aim of highlighting how these different 
approaches to the problem are related. 

DERIVATION OF THE METHOD 

The derivation of the method is identical in two and 
three dimensions. It is closely related to ways of deduc- 
ing strain from sets of vectors of unit length (e.g. Harvey 
& Laxton 1980) and to statistical expressions relating to 
orientation data (e.g. Mardia 1972, p. 223, Woodcock 
1977). The principal feature of the method given here is 

that it uses the moment of inertia, not of a set of unit 
vectors, but of a set of vectors of known lengths. Let us 
denote the length and orientation of a linear object by 
vector v. In two dimensions, if v has length L and 
orientation a then 

v = (L cos a, L sin a). (t) 

If this deforms homogeneously in two or three dimen- 
sions, then 

Vf = Dv i, 

where D is the deformation tensor. If we define a 
symmetric tensor 

Q = vv (2) 

then 

Qxx = VxVx 

Qxy Vxl)y , etc. 

So, for example, in two dimensions we have 

Qxx = L2 cos2 a. 

In both two and three dimensions Q changes during 
deformation according to: 

Qf = vfvf ~ (Dvi)(Dvi) = D(vivi)D T = DQi DT. (3) 

Because this relation is linear we may take the average of 
both sides of this expressions: 

av(Qf) = av(DQiD T) = D av(Qi)D T 

and so, defining an average tensor 

S --- av(Q), 

we find 

Sf = DSiD T. (4) 

St summarizes the initial lengths and orientations of all 
the lines in the distribution. It is a symmetric second 
rank tensor. If the initial distribution was isotropic then 
it should be a multiple of the unit tensor (otherwise, the 
maximum eigenvalue of Si would define a preferred 
initial orientation). So put 

1007 



1008 J. WHEELER 

S~ = kg, (5) 

where k is a constant and g is the unit tensor. This is true 
for any uniform initial distribution. So 

Sf = D(kg)D r = kDD v = kF, (6) 

where F is the Finger tensor embodying the orientation 
and magnitude of the strain. Although k is not known, 
the eigenvalues of this tensor will be proportional to the 
squares of the principal strains, and so the strain ratio 
and orientation can be determined by standard 
methods. 

APPLICATION OF THE METHOD 

It is assumed that each line is described by its length L 
and its orientation a clockwise from some datum direc- 
tion. The line may be regarded as a vector but it is 
important to note that the vector has an ambiguous 
direction---its orientation may be specified by a or 
a + 180" with equal validity. For each line calculate the 
three quantities (which are components of a symmetric 
tensor) 

Ox_r = L 2 cos2 a 

Qxy = L2 c o s  ct sin a 

Qyy = L 2 sin 2 a. (7) 

Note that the ambiguity in a has no effect on these 
values. Now calculate the average of each of these three 
values for all the lines by summing them for each 
deformed object and dividing the result by the number 
of objects. These three averages are themselves com- 
ponents of a symmetric tensor S. If N is the number of 
lines then 

Sxx = (I/N) X O~x, etc., (8) 

(compare Woodcock 1977). This tensor is proportional 
to the tensor describing the strain ellipse, as is shown 
above. S has the dimensions of area. The axial ratio R 
and orientation 0 of the strain ellipse are extracted by 
the following formulae: 

tan 20 = 2Sxy / (S , , x  - Syy)  (9) 

R = h + ( h  2 - 1) j/2, (10) 

where 
h = (1/2)(Sxx + S y y ) ( S x x S y y  - Sxy2) -v2. 

This expression for R is equivalent to that of Ramsay & 
Huber (1983, equation B.20, p. 287), noting that S is 
proportional to the Finger tensor, which in turn depends 
on the deformation tensor via equation (6). 

To illustrate the method, Table 1 shows a worked 
example using only six deformed linear objects for 
clarity. The distribution was obtained by modelling the 
effect of strain on lines initially uniformly distributed at 
angular intervals of 30*. Only six objects are used so that 
the reader may check the calculation, but more data 
should be used when analysing real situations. The table 
gives the three components of the average tensor, from 

Table 1. Example calculation using a model deformed distribution 

Marker  L ~ L-" cos~-a L'-cosasina L2sin2a 

1 3.16 t8 9.032 2.935 0.954 
2 3.9 37 9.701 7.311 5.509 
3 3.9 53 5.509 7.311 9.701 
4 3.16 72 0.954 2.935 9.032 
5 2.19 107 0.410 -1 .341 4.386 
6 2.19 163 4.386 -1 .341 0.410 

Average S,x = 4.999 STy = 2.968 Syy = 4.999 

which are derived 0 = 45 ° and R = 2 using equations (9) 
and (10). 

The only assumptions here are that the strain was 
imposed homogeneously and that the distribution has an 
isotropic initial tensor S. All distributions that were 
initially uniform satisfy this criterion. Other initial distri- 
butions such as ones with, for example, four-fold sym- 
metry, will also satisfy the criterion but may not be 
uniform (Wheeler 1988). Therefore it is important to 
test the uniformity hypothesis by unstraining the distri- 
bution according to the estimated strain and examining 
the derived initial distribution for uniformity. This fol- 
lows the procedure of Wheeler (1984) to analyse 
strained elliptical objects, in which an algebraically de- 
rived strain estimate is used to unstrain the final distri- 
bution of objects. The initial distribution is then dis- 
played in graphic form to highlight any departure from 
uniformity. In the case of linear markers, a histogram 
could be used to display the initial orientation pattern 
(e.g. Beach 1979). 

It is important to note that this methodology applies 
equally to the three-dimensional case in which the 
lengths and orientations of lines have been measured. 
This is analogous to the three-dimensional method of 
Sanderson & Meneilly (1981). In the three-dimensional 
case, each line can be described by a vector v with three 
components. The tensor Q now has six components: x x ,  

x y ,  y y ,  y z ,  z z  and x z .  For each linear object we have 

a x x  = VxVx, etc. 

These quantities Q are averaged to determine the tensor 
S, whose eigenvectors and eigenvalues are found by 
standard techniques. 

This section has given the information necessary to 
use the method. The next two sections concern its 
relation to other procedures for analysing strain in linear 
objects. 

RELATIONSHIP TO THE METHOD OF PANOZZO 
(1984) 

In this method, deformed linear objects are rep- 
resented by vectors v. It is possible to project these 
vectors onto a reference line of some arbitrary orien- 
tation to give a projected length P. If n is a unit vector 
parallel to the projection line, then the projected length 
is 

P = v . n .  (11) 
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The next step is to evaluate P for each object and then 
obtain the average. However, there is an ambiguity in 
the sign of P because there is an ambiguity in the sense in 
which the vector points. To avoid this, Panozzo suggests 
taking the positive magnitude, IP[, for each object. 
These are summed to obtain a positive value. 

This whole process is repeated for different orien- 
tations of reference line, to obtain various values of 

IPI. When displayed graphically, maxima and minima 
in the values of E IPI are used to deduce axial ratio and 
orientation of the strain ellipse. If many different refer- 
ence lines are used to produce a refined graph, the 
amount of calculation in this method is large, involving 
many steps of projecting and averaging. 

Let us consider a minor modification to the method, in 
which p2 is used instead of IPI. Again, this is always 
positive, regardless of which choice is made for the 
'head' of the vector representing each linear object, p2 
may be calculated, averaged and plotted for various 
reference lines exactly as described by Panozzo for IPI. 
So this method is no faster, but just as valid for deducing 
strain. However, using p2 we can short-cut most of the 
computation, as will be shown. We have 

p2 = (v. n) 2 = (n.  v)(v. n) = n.  (Qn), (12) 

where Q is the tensor defined above. For an averaging 
procedure on a particular reference line, n is the same 
for each object, and can be taken outside the average: 

av(P 2) = av(n-(Qn)) 
= n.  (av(Q))n 
= n-(Sn) .  (13) 

In this expression, n describes the reference line, whilst 
S is a function only of the distribution. Now let the 
reference line have an orientation fl so that n has 
components cos r ,  and sin r ,  and 

av(e 2) = Sxx cos 2 fl + Sxy cos fl sin fl + Syy sin 2 ft. (14) 

This means that the plot of av(P 2) against fl will not only 
show the single maximum and minimum which are used 
to deduce strain, but also will be precisely sinusoidai, 
governed only by the three parameters which define S. 
This is true whatever the number of objects being used in 
the analysis. There is hence no need to actually plot the 
graph of av(P 2) vs fl: instead all that is required is to 
calculate S, and determine its eigenvalues. This is the 
method already presented in this paper. In short, a 
minor modification to the graphical method of Panozzo 
(1984) shows that it illustrates the geometric meaning of 
the algebraic technique given here, but that the graph is 
not necessary to derive the strain estimate. 

RELATIONSHIP TO THE METHOD OF 
SANDERSON & PHILLIPS (1987) 

These authors propose the use of a vector average: 
each linear object is represented by a vector at angle 2a 
to some datum and with magnitude L (the length of the 
object). The average of these vectors has an orientation 

which is used to estimate the long axis of the strain 
ellipse and a magnitude which is related to the strain 
ratio. The form of this relation was derived numerically 
by computer simulations of a uniform distribution. 

Consider a variation on the 'length-weighted' method 
in which the squares of the object lengths are used to 
weight the vectors. Then each linear object is rep- 
resented by a vector t, with 

t = (L 2 cos 2a, L 2 sin 2a). (15) 

The average value of the vector t is a vector whose 
orientation yields the estimate of the strain axis, and 
whose normalized magnitude 

M = }av(t)l/av(L 2) (16) 

should be related to the strain ratio. So far the argu- 
ments have exactly followed the 'length weighted' 
method, and could determine the relation between R 
and M by simulations, following the example of Sander- 
son & Phillips. This is not necessary: an algebraic re- 
lation exists, as will now be shown. The relation is 
derived by noting that the vector t is related to the tensor 
Q, referred to in previous sections, in a linear fashion, 

t = (O~x- ayr, 2Qxy). (17) 

Similarly L 2 is another linear function, the trace of Q: 

L2 = Oxx + Qyy. (18) 

Since both these relations are linear, and S is the average 
of Q, we find 

av(t) = (S= - Syy, 2Sxy) 
av(L 2) = Sxx + Syy. (19) 

If the angle of av(t) to datum is 20, where 0 is the 
orientation of the long axis of the strain ellipse, then 

tan 20 = 2SxyI(S** - Syy) 

which is precisely the formula given by the new method 
(equation 9). To derive the strain estimate from the 
'normalized magnitude' M, note that 

lav(t)l 2 =(S= - S~y) 2 + 4Sxy 2 

= ( s =  + sxy) 2 + 4s 7 - 4sx s,  
= (tr S) 2 - 4 det S. " (20) 

Here, tr S and det S are the trace and determinant of S. 
So 

M 2 = 1 - 4 det S/(tr S) 2. 

If the initial distribution was uniform then S is pro- 
portional to the shape tensor N (Wheeler 1984, equation 
A7). From this expression is derived 

det S/(tr S) 2 = 1/(R + l/R) 2 

from which is found 

R 2 - 1 
M = ~ - ~ .  (21) 

This relation is similar in form to that shown in table 1 of 
Sanderson & Phillips, and is proven to apply to any 
initially uniform distribution. It also can be shown to be 
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identical to the relation (4) between strain ratio and the 
tensor S. 

To summarize this argument, it has been shown that if 
the 'length-weighting method' is modified to use 'length- 
squared weighting' then it becomes mathematically 
identical to the new method proposed here. The 'nor- 
malized resultant length' referred to by Sanderson & 
Phillips (analogous to the quantity referred to here by 
M) need not be calibrated against strain ratio 
numerically--instead equation (21) provides the re- 
lationship, and is in turn equivalent to expression (10) as 
described earlier. 

Wheeler 1984). If the predicted unstrained distribution 
is not uniform then no other estimate of homogeneous 
strain could possibly produce uniformity, and the nature 
of the distribution and strain mechanisms must be reas- 
sessed. 

Finally, the success of the tensor-algebraic approach 
in understanding the strain of distributions of linear 
objects underlines its importance in strain analysis. 
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CONCLUSIONS 

The new method has the following features. 
(1) The methods of Panozzo (1984) and Sanderson & 

Phillips (1987) do not have obvious three-dimensional 
generalizations. The new method applies equally well in 
two and three dimensions. 

(2) The amount of computation required is small. 
(3) The algebra involved in this method is more 

straightforward than the complicated integrations 
required in both two and three dimensions by Harvey & 
Laxton (1980). 

(4) No numerical calibration of the method is 
required. 

Use of this method does not prove that the assump- 
tions behind it (namely that the distribution was uniform 
and the strain was homogeneous) were correct. How- 
ever if the assumptions are correct then the estimate is 
valid. The best way to test the validity is to create the 
predicted unstrained distribution from the data and the 
strain estimate. This can be examined, visually in an 
appropriate form, or statistically, for uniformity (cf. 
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